Skip to main content

Physical Human-Robot Interaction with a Tethered Aerial Vehicle: Application to a Force-based Human Guiding Problem

Author
Abstract
Today, physical human-robot interaction (pHRI) is a very popular topic in the field of ground manipulation. At the same time, aerial physical interaction is also developing very fast. Nevertheless, pHRI with aerial vehicles has not been addressed so far. In this work, we present the study of one of the first systems in which a human is physically connected to an aerial vehicle by a cable. We want the robot to be able to pull the human toward a desired position (or along a path) only using forces as an indirect communication-channel. We propose an admittance-based approach with a controller, inspired by the literature on flexible manipulators, that computes the desired interaction forces that properly guide the human. The stability of the system is formally proved with a Lyapunov-based argument. The system is also shown to be passive, and thus robust to nonidealities like model and tracking errors, additional human forces, time-varying inputs, and other external disturbances. We also design a maneuver regulation policy to simplify the path following problem. The global method has been experimentally validated on a group of four subjects, showing a reliable and safe pHRI.
Year of Publication
2021
Journal
IEEE Transactions on robotics
URL
https://ieeexplore.ieee.org/document/9353246
DOI
10.1109/TRO.2020.3038700
Short Title
TRO